Alveolar Macrophage ABCG1 Deficiency Promotes Mitochondrial Dysfunction and Pulmonary Granulomatous Inflammation

Eman Soliman, Matthew McPeek, Anagha Malur, Kimberly Ann Kew, Gina Murray, Kymberly Gowdy, Barbara P Barna, Mary Jane Thomassen

East Carolina University
PULMONARY SARCOIDOSIS

- Pulmonary sarcoidosis is a chronic inflammatory condition characterized by the presence of granulomas.
- Most patients enter remission.
- 20% develop fibrotic lung disease (granuloma → fibrosis).
- Morbidity and mortality are substantially increased for patients with fibrosis.

Multiwall Carbon Nanotube (MWCNT)-induced granulomatous lung inflammation
Alveolar macrophages in MWCNT-instilled mice are LIPID LADEN
Lipid metabolism in macrophages

- LDL
- LDL-R
- SREBP2
- LXR
- RXR
- LDL-R
- ABCA1
- ABCG1
- miR-33
- Apo-A1
- HDL
- Foxa2
- Cyt-c
- Caspase 3/7
- Apoptosis
- FOAM CELL
- Cytokines
- ROS
- Activated mΦ
- Ox-LDL
- TGF-β
- Fibrosis
- Phagocytosis

Activated mΦ

- FOAM CELL
- Cyt-c
- Caspase 3/7
- Apoptosis

Phagocytosis

TGF-β

Fibrosis

miR-33

Phagocytosis
Proposed mechanism of granuloma and fibrosis formation

AM engulf MWCNT

Granuloma → Cytokines

↑↑↑↑ ROS

Ox-LDL

↑ CD36 & LOX-1

↑↑↑↑ OxPLs

↑↑↑↑ miR-33

Mito. Dysfunction

Cyt. c

Apoptosis

Phagocytosis of apoptotic cells

↑↑↑↑ TGF-β → Fibrosis

↓↓↓↓ ABCG1

Foam cells

↓ HDL & lipid accumulation

Previous studies in lab
MWCNT upregulates miRNA-33 and downregulates ABCA1 and ABCG1 in AM of C57-wild type mice
ABCG1 deficiency increased the granuloma induced by MWCNT
ABCG1 deficiency increased fibrosis induced by MWCNT

Fibrosis Score

Relative Fold Change mRNA Expression

TGFβ

PDGF1

C57

ABCG1-KO

SHAM

MW CNT

SHAM MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT

SHAM

MW CNT
Proposed mechanism of granuloma and fibrosis formation

AM engulf MWCNT

- **Granuloma**
- **Cytokines**

ROS
- Ox-LDL
- Ox-LDL \uparrow CD36 & LOX-1

OxPLs

- Mito. Dysfunction
 - Cyt. c
 - Apoptosis
 - Phagocytosis of apoptotic cells
 - \uparrow TGF-β → Fibrosis
 - \uparrow miR-33
 - \downarrow ABCG1
 - \downarrow HDL & lipid accumulation
 - Foam cells
MWCNT increased Phospholipids (PC, PE) and Triglycerides in lung of C57 wild type mice
MWCNT reduced Phosphatidylserine (PS) in lung of C57 wild type mice

- PS is required for cholesterol trafficking in plasma membrane and formation of HDL
- Suggest reduction in HDL
MWCNT increase Stearoylcarnitine in lung of C57 wild type mice

Suggest deficiency in Carnitine Palmitoyl Transferase II (CPTII) and B-oxidation in mitochondria
Proposed mechanism of granuloma and fibrosis formation

AM engulf MWCNT

Granuloma → Cytokines

AM engulf MWCNT → Ox-LDL

↑ CD36 & LOX

↑ OxPLs

↑ miR-33

↑ ROS

Ox-LDL → CD36 & LOX-1

Mito. Dysfunction → Cyt. c → Apoptosis

Phagocytosis of apoptotic cells

↑ TGF-β → Fibrosis

↓ ABCG1

↓ HDL & lipid accumulation

Foam cells
MWCNT increased ROS production in BAL cells of C57 wild type mice
Proposed mechanism of granuloma and fibrosis formation

- AM engulf MWCNT
 - Granuloma → Cytokines
 - Ox-LDL
 - ↑ CD36 & LOX-1
 - OxPLs
 - ↑ miR-33
 - ↓ ABCG1
 - ↓ HDL & lipid accumulation
 - Foam cells
 - Mito. Dysfunction
 - Cyt. c
 - Apoptosis
 - Phagocytosis of apoptotic cells
 - ↑ TGF-β → Fibrosis
 - ROS
 - Ox-LDL
 - ↑ CD36 & LOX-1
 - ↑ miR-33
 - ↓ ABCG1
 - ↓ HDL & lipid accumulation
 - Foam cells
MWCNT reduced mitochondrial function in BAL cells of wild type mice.
Proposed mechanism of granuloma and fibrosis formation

AM engulf MWCNT

Granuloma ← Cytokines

ROS

→ Ox-LDL

→ Ox-LDL

↑ CD36 & LOX-1

↑ OxPLs

Mito. Dysfunction

↑ miR-33

↓ ABCG1

↓ HDL & lipid accumulation

Foam cells

Apoptosis

↓ TGF-β → Fibrosis

Phagocytosis of apoptotic cells
MWCNT induced apoptosis in BAL cells of wild type mice

Caspase 3/7 activity

Relative luminescence/10^3 cells

- SHAM
- MWCNT

* Indicates a significant difference.
Proposed mechanism of granuloma and fibrosis formation

AM engulf MWCNT

Granuloma ← Cytokines

ROS

Ox-LDL

↑ CD36 & LOX-1

↑ OxPLs

↑ miR-33

↓ ABCG1

↓ HDL & lipid accumulation

Foam cells

↑ TGF-β → Fibrosis

Phagocytosis of apoptotic cells

Apoptosis

Mito. Dysfunction

Cyt. c
ABCG1 deficiency promotes mitochondrial dysfunction induced by MWCNT

Mitochondrial respiration

- SHAM
- MWCNT

Beta oxidation

- SHAM
- MWCNT

* Indicates a significant difference.
• ROS production and mitochondrial dysfunction in alveolar macrophages may contribute to induction of fibrosis by MWCNT

• ABCG1 deficiency enhanced mitochondrial damage and increased fibrosis in MWCNT-induced granuloma